Cases of equality in certain multilinear inequalities of Hardy–Riesz–Rogers–Brascamp–Lieb–Luttinger type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Multilinear Poincaré Inequalities for Vector Fields of Hörmander Type

Abstract. As the classical (p, q)-Poincaré inequality is known to fail for 0 < p < 1, we introduce the notion of weighted multilinear Poincaré inequality as a natural alternative when m-fold products and 1/m < p are considered. We prove such weighted multilinear Poincaré inequalities in the subelliptic context associated to vector fields of Hörmader type. We do so by establishing multilinear re...

متن کامل

Boundary Case of Equality in Optimal Loewner-type Inequalities

We prove certain optimal systolic inequalities for a closed Riemannian manifold (X, g), depending on a pair of parameters, n and b. Here n is the dimension of X , while b is its first Betti number. The proof of the inequalities involves constructing Abel-Jacobi maps from X to its Jacobi torus T, which are area-decreasing (on b-dimensional areas), with respect to suitable norms. These norms are ...

متن کامل

Optimal Hardy–littlewood Type Inequalities for Polynomials and Multilinear Operators

Abstract. In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2014

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2014.03.005